翻訳と辞書
Words near each other
・ Pillager Band of Chippewa Indians
・ Pillager, Minnesota
・ Pillai
・ Pillai (community)
・ Pillai (Nair title)
・ Pillai (surname)
・ Pillai Lokacharya
・ Pillai Nila
・ Pillai Nila (TV series)
・ Pillai prime
・ Pilina
・ Pilina solarium
・ Pilina unguis
・ Pilinella
・ Piling Bay
Piling-up lemma
・ Piliny
・ Piliny culture
・ Piliocalyx
・ Pilioniai
・ Pilioritikos
・ Piliostigma
・ Piliostigma thonningii
・ Pilip Ballach Ó Duibhgeannáin
・ Pilip Vaitsiakhovich
・ Pilipalpinae
・ Pilipectus
・ Pilipectus taiwanus
・ Pilipili
・ Pilipinas Basketball


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Piling-up lemma : ウィキペディア英語版
Piling-up lemma

In cryptanalysis, the piling-up lemma is a principle used in linear cryptanalysis to construct linear approximation to the action of block ciphers. It was introduced by Mitsuru Matsui (1993) as an analytical tool for linear cryptanalysis.
==Theory==
The piling-up lemma allows the cryptanalyst to determine the probability that the equality:
:X_1\oplus X_2\oplus\cdots\oplus X_n=0
holds, where the ''X'' 's are binary variables (that is, bits: either 0 or 1).
Let ''P''(A) denote "the probability that A is true". If it equals one, A is certain to happen, and if it equals zero, A cannot happen. First of all, we consider the piling-up lemma for two binary variables, where P(X_1 = 0)=p_1 and P(X_2 = 0)=p_2.
Now, we consider:
:P(X_1 \oplus X_2 = 0)
Due to the properties of the xor operation, this is equivalent to
:P(X_1=X_2)
''X''1 = ''X''2 = 0 and ''X''1 = ''X''2 = 1 are mutually exclusive events, so we can say
:P(X_1=X_2)=P(X_1=X_2=0) + P(X_1=X_2=1)=P(X_1=0, X_2=0) + P(X_1=1, X_2=1)
Now, we must make the central assumption of the piling-up lemma: the binary variables we are dealing with are independent; that is, the state of one has no effect on the state of any of the others. Thus we can expand the probability function as follows:
Now we express the probabilities ''p''1 and ''p''2 as ½ + ε1 and ½ + ε2, where the ε's are the probability biases — the amount the probability deviates from ½.
Thus the probability bias ε1,2 for the XOR sum above is 2ε1ε2.
This formula can be extended to more ''X'' 's as follows:
:P(X_1\oplus X_2\oplus\cdots\oplus X_n=0)=1/2+2^\prod_^n \epsilon_i
Note that if any of the ε's is zero; that is, one of the binary variables is unbiased, the entire probability function will be unbiased — equal to ½.
A related slightly different definition of the bias is
\epsilon_i = P(X_i=1) - P(X_i=0),
in fact minus two times the previous value. The advantage is that now with
\varepsilon_= P(X_1\oplus X_2\oplus\cdots\oplus X_n=1)- P(X_1\oplus X_2\oplus\cdots\oplus X_n=0)
we have
:\varepsilon_=(-1)^\prod_^n \varepsilon_i,

adding random variables amounts to multiplying their (2nd definition) biases.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Piling-up lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.